Paper Reference(s) 6683/01 Edexcel GCE

Statistics S1

Advanced/Advanced Subsidiary

Friday 5 June 2015 – Morning

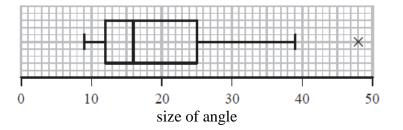
Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) <u>Items included with question papers</u> Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.


Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 6 questions. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. Each of 60 students was asked to draw a 20° angle without using a protractor. The size of each angle drawn was measured. The results are summarised in the box plot below.

(*a*) Find the range for these data.

(1)

(1)

(*b*) Find the interquartile range for these data.

The students were then asked to draw a 70° angle. The results are summarised in the table below.

Angle, <i>a</i> , (degrees)	Number of students
$55 \le a < 60$	6
$60 \le a < 65$	15
$65 \le a < 70$	13
$70 \le a < 75$	11
$75 \le a < 80$	8
$80 \le a < 85$	7

- (c) Use linear interpolation to estimate the size of the median angle drawn. Give your answer to 1 decimal place.
- (d) Show that the lower quartile is 63° .

For these data, the upper quartile is 75° , the minimum is 55° and the maximum is 84° .

An outlier is an observation that falls either

more than $1.5 \times$ (interquartile range) above the upper quartile or

more than $1.5 \times$ (interquartile range) below the lower quartile.

- (e) (i) Show that there are no outliers for these data.
 - (ii) On graph paper, draw a box plot for these data.

(5)

(f) State which angle the students were more accurate at drawing. Give reasons for your answer.

(3)

(2)

(2)

2. An estate agent recorded the price per square metre, $p \pm m^2$, for 7 two-bedroom houses. He then coded the data using the coding $q = \frac{p-a}{b}$, where *a* and *b* are positive constants. His results are shown in the table below.

р	1840	1848	1830	1824	1819	1834	1850
q	4.0	4.8	3.0	2.4	1.9	3.4	5.0

(*a*) Find the value of *a* and the value of *b*.

The estate agent also recorded the distance, d km, of each house from the nearest train station. The results are summarised below.

$$S_{dd} = 1.02$$
 $S_{qq} = 8.22$ $S_{dq} = -2.17$

(b) Calculate the product moment correlation coefficient between d and q.

(2)

(2)

(c) Write down the value of the product moment correlation coefficient between d and p.

(1)

The estate agent records the price and size of 2 additional two-bedroom houses, H and J.

House	Price (£)	Size (m ²)	
Н	156 400	85	
J	172 900	95	

(*d*) Suggest which house is most likely to be closer to a train station. Justify your answer.

(3)

3. A college has 80 students in Year 12.

)
)
)
) /

- 4. Statistical models can provide a cheap and quick way to describe a real world situation.
 - (a) Give two other reasons why statistical models are used.

(2)

A scientist wants to develop a model to describe the relationship between the average daily temperature, $x \,^{\circ}$ C, and her household's daily energy consumption, $y \,$ kWh, in winter.

A random sample of the average daily temperature and her household's daily energy consumption are taken from 10 winter days and shown in the table.

x	-0.4	-0.2	0.3	0.8	1.1	1.4	1.8	2.1	2.5	2.6
у	28	30	26	25	26	27	26	24	22	21

[You may use
$$\sum x^2 = 24.76$$
 $\sum y = 255$ $\sum xy = 283.8$ $S_{xx} = 10.36$]

(*b*) Find S_{xy} for these data.

(c) Find the equation of the regression line of y on x in the form y = a + bx.

Give the value of *a* and the value of *b* to 3 significant figures.

- (*d*) Give an interpretation of the value of *a*.
- (e) Estimate her household's daily energy consumption when the average daily temperature is 2°C.

(2)

The scientist wants to use the linear regression model to predict her household's energy consumption in the summer.

(*f*) Discuss the reliability of using this model to predict her household's energy consumption in the summer.

(2)

(4)

(1)

(3)

5. In a quiz, a team gains 10 points for every question it answers correctly and loses 5 points for every question it does not answer correctly. The probability of answering a question correctly is 0.6 for each question. One round of the quiz consists of 3 questions.

The discrete random variable *X* represents the total number of points scored in one round. The table shows the incomplete probability distribution of *X*.

x	30	15	0	-15
$\mathbf{P}(X=x)$	0.216			0.064

(a) Show that the probability of scoring 15 points in a round is 0.432.
(b) Find the probability of scoring 0 points in a round.
(c) Find the probability of scoring a total of 30 points in 2 rounds.
(d) Find E(X).
(e) Find Var(X).
(3)

In a bonus round of 3 questions, a team gains 20 points for every question it answers correctly and loses 5 points for every question it does not answer correctly.

(f) Find the expected number of points scored in the bonus round.

6. The random variable $Z \sim N(0, 1)$.

A is the event Z > 1.1B is the event Z > -1.9C is the event -1.5 < Z < 1.5

- (a) Find
 - (i) P(A),
 - (ii) P(B),
 - (iii) P(C),
 - (iv) $P(A \cup C)$.

The random variable *X* has a normal distribution with mean 21 and standard deviation 5.

(b) Find the value of w such that P(X > w | X > 28) = 0.625.

(6)

(6)

(3)

TOTAL FOR PAPER: 75 MARKS

END

Question	Scheme	Marks
1.	[Range = 48 - 9] = 39	B1
(a)		(1)
(b)	$[IQR = 25 - 12] = \underline{13}$	B1 (1)
(-)		(1)
(c)	Median = $65 + \frac{[9]}{13} \times 5 = \frac{890}{13} = \text{awrt } \underline{68.5}^{\circ} \left[\text{Condone: } 65 + \frac{[9.5]}{13} \times 5 = 68.7 \right]$	M1 A1 (2)
(d)	Lower Quartile = $60 + \frac{9}{15} \times 5 = \underline{63}$ (*)	M1 A1cso
$(a)(\mathbf{i})$	$63 - 1.5 \times (75 - 63) = 45$	(2)
(e)(i)	$63 - 1.5 \times (75 - 63) = 43$ $75 + 1.5 \times (75 - 63) = 93$	M1A1
	No data above 93 and no data below 45 or $55>45$ etc or there are no outliers.	A1
(;;)		M1
(ii)		A1ft
	40 50 60 70 80 90	
(f)	Median for the 70° angle is closer (to 70°)[than the 20° median is to 20°]	(5) B1
(1)	The range/IQR for the 70° angle box plot is smaller/shorter	B1 B1
	Therefore, students were more accurate at drawing the 70° angle.	dB1
		(3) (14 marks)
	Notes	
(c)	M1 for an attempt (should have 65 or 70, 13 and 5)NB working down: 70-	$\left[\frac{4}{12}\right] \times 5$
	Allow any correct method leading to $\frac{890}{13}$, the "5" may be implied by 65 and	13 70 seen
	Al awrt 68.5 (condone 68.7 if $(n+1)$ is used). Ans only of 68.5 is $2/2$ but 68.7 if	
(d)	M1 for correct expression for the lower quartile (condone 9.25 if $(n+1)$ used))
	Watch out for working down e.g. $65 - \frac{6}{15} \times 5$ (M1) but e.g. $\frac{60 + 65}{2} = 62.5 =$	63 is M0
	A1 for correct solution with no incorrect working seen (condone $(n+1)$ givin	
(e)(i)	M1 for either correct calculation (may be implied by one correct limit)	·
	A1 for either 45 or 93 A1 for 45 and 93 and conclusion	
(ii)	M1 for a box with 1 whisker drawn on each side (must see the line drawn)	
	A1ft their median $63 < Q_2 < 75$ but quartiles (63 and 75), 55 and 84 must be	correct.
Accuracy	Use 0.5 sq. accuracy so condone median on 68 or 69 if 68.5 seen	
(f)	1 st B1 for correct comparison of their medians $(63 < (c) < 75)$ to true value	,
(1)	2^{nd} B1 for correct comparison of their range or IQR ("spread" is B0)	-
	Allow saying IQRs of 12 and 13 are similar. Ignore mention of "skewness" of	
	3 rd dB1 dependent upon at least one previous B1 being scored for choosing 7	00

Question	Scheme	Marks
2. (a)		M1 A1 (2)
(b)	$r = \frac{-2.17}{\sqrt{1.02 \times 8.22}} = -0.749417343$ awrt - <u>0.749</u>	M1A1
(c)	- 0.749	(2) B1ft (1)
(d)	House H: $156400/85 = [\pounds 1840/m^2 \text{ or } q = 4]$ House J: $172900/95 = [\pounds 1820/m^2 \text{ or } q = 2]$	M1
	Since $(r = -0.749)$, there is negative correlation. <u>or</u> The higher the price (per square metre), the lower the distance from the train station.	dM1 A1
	ThereforeHouse H is likely to be closer.	(3) (8 marks)
	Notes	
(a) (b)	by one correct answer) A1 for $a = 1800$ and $b = 10$ ($a = 10$ and $b = 1800$ is A0) Correct answer	-
(c)	B1ft for -0.749 or ft their answer to (b) to at least 2sf. Must be in the range $-$	1 <'(b)'<1
(d)	 M1 for calculating price/square metre for <u>both</u> <i>H</i> and <i>J</i>. Can be implied by sight of 1840 and 1820 (so OK if not labelled or m These may be seen in the table in the question. Allow comment like "<i>H</i> is £20/square metre more than <i>J</i>" dM1 dependent on 1st M1 for a statement that correlation is negative <u>or</u> a contextualised interpretation of the negative correlation. 	is-labelled)
r > (· 0)

Questio	n Scheme	Marks
3. ()	Biology 11 Chemistry 2' 3 8 17 Physics 22	B1 M1 A1 A1 B1
(1	$\frac{13'}{80} = \frac{13'}{0} = \frac{11}{0} \frac{11}{0} = \frac{11}{0} \frac{1}{0} = \frac{1}{0} \frac{1}{0} \frac{1}{0} = \frac{1}{0} \frac{1}{0} \frac{1}{0} = \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} = \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} = \frac{1}{0} \frac{1}$	(5) B1ft
($\frac{28+30-11}{80} \text{ or } \frac{2+3+4+8+13+17}{80} \text{ or } 1-\frac{(11+22)}{80} = \frac{47}{80} \text{ or } 0.5875$	(1) M1 A1 (2)
($\frac{"17+8+13"}{"47"} \text{ or } \frac{\frac{"38"}{80}}{\frac{"47"}{80}} \text{ or } 1-\frac{"2+3+4"}{"47"} = \frac{38}{47} \text{ (condone awrt 0.809)}$	M1 A1cao
(P(B C) = $\frac{7}{28}$, P(B) = $\frac{20}{80}$ P(C B) = $\frac{7}{20}$, P(C) = $\frac{28}{80}$ P(B \cap C) = $\frac{7}{80}$, P(B) = $\frac{20}{80}$ P(C) = $\frac{28}{80}$ P(B C) = P(B), P(C B) = P(C) these may be implied by correct conclusion	(2) M1
	$P(B \cap C) = P(B) \times P(C)$ this approach requires the product to be seen So, they are independent.	M1 A1 (3) (13 marks)
	Notes	
(;	 B1 for 3 intersecting circles with 3 in the centre. Allow probs. or integers in d M1 for some correct subtraction e.g. at least one of 2, 4, 8 or for B: 20 – their A1 for 2, 4 and 8 (ignore labels) A1 for 11, 13 and 17 (must be in compatible regions with 2, 4, 8 if no labels) B1 for correct labels and 22 and box (Do not treat "blank" as 0 so can't use 0 for 	r(2+3+4) etc
()	 M1 for a correct expression seen in (c) (<u>or</u> ft their diagram). Correct ans M1 M1 for denominator of 47 or ft their numerator from part (c) <u>and</u> numerator of their (17 + 8 + 13) or (their 47) – their (2 + 3 + 4). Correct ans M1A1 	
(M1 for stating at least the required probs.& labelled for a correct test (can ft t M1 for <u>use</u> of a correct test with <i>B</i> and <i>C</i> Must see product attempted for P(<i>I</i> A1 for a correct test with all probabilities correct <u>and</u> a correct concluding st NB M0M1A0 should be possible but A1 requires both Ms 	$B \cap C$) test.

Ques	tion	Scheme	Marks				
4.	(a)	To simplify (or represent) a real world problem (o.e.) To improve understanding (o.e.) To analyse a real world problem or can change variables/replicate easily (oe) To make predictions or find estimates (o.e.)	B1g B1h				
	(b)		(2) B1				
		$\sum x = 12$ S _{xy} = 283.8 - $\frac{12 \times 255}{10}$, = -22.2	M1,A1cao				
	(c)	$b = \frac{'-22.2'}{10.36} = -2.142857$ (A1 for awrt -2.1) $\begin{bmatrix} a = \overline{y} - b\overline{x} \implies \end{bmatrix} a = \frac{255}{10} - b' \times \frac{"12"}{10} = 28.07143$ y = 28.1 - 2.14x [Condone: $y = 28.1 + -2.14x$]	(3) M1A1				
		$\begin{bmatrix} a = \overline{y} - b\overline{x} \implies \end{bmatrix} a = \frac{255}{10} - b' \times \frac{12''}{10} = 28.07143$	M1				
		y = 28.1 - 2.14x [Condone: $y = 28.1 + -2.14x$]	A1				
	(d)	(28.1 kWh) of energy are used when the temperature is 0[°C]	(4) B1 (1)				
	(e)	y = 28.1 - 2.14(2) = awrt <u>23.8</u>	M1 A1				
	(f)	The regression model is based on temperatures from the winter, so not reliable in the summer. Stating it is reliable (whatever the reason) is B0B0	(2) B1 dB1 (2) (14 marks)				
		Notes	· · · · · · · · · · · · · · · · · · ·				
	(a)	Make sure reasons refer to models and not tests 1 st B1g (be fairly generous) for a sensible reason not using "quick", "cheap" of 2 nd B1h (be slightly harder) for two convincing reasons (both based on the li Use professional judgement and mark as B0B0 or B1B0 or B1B1 do not	st above)				
	(b)	B1 for $\sum x = 12$ (May be by the table) (Can be implied by 3060 seen or the next line) M1 for attempt at correct formula (ft their $\sum x$ where $10 < \sum x < 14$) A1 for -22.2 only					
	(c)						
	(d)	B1 for a contextualised interpretation e.g. the amount of <u>energy</u> used when <u>temperature</u> is <u>0[°C]</u> or [28.1] <u>kWh</u> used when <u>temp. is 0[</u> °C] [Can ft their 28.1]Need <u>temp</u> or <u>sign</u> [B0 for "value of y when $x = 0$ " since no context in words]					
	(e) (f)	M1 for substituting $x = 2$ into their equation B1 for reasoning to suggest that temperatures are different in summer or the based only on data from the winter. Allow mention of <u>extrapolation</u> (o.e.) dB1 so not reliable.	model was				

Question	Scheme	Marks					
5. (a)	To score 15 points, 2 correct and 1 not correct						
	$[0.6 \times 0.6 \times 0.4] + [0.6 \times 0.4 \times 0.6] + [0.4 \times 0.6 \times 0.6]$ or $3 \times (0.6 \times 0.6 \times 0.4)$	M1 A1cso					
	= 0.432 (*)						
		(2)					
(b)	$1 - (0.216 + 0.432 + 0.064) = 0.288$ or $3 \times 0.6 \times (0.4)^2$						
(c)	$[(30, 0), (0, 30) \text{ or } (15, 15)] 0.216 \times 0.288' + 0.288' \times 0.216 + 0.432 \times 0.432$	(1) M1 A1ft					
	awrt <u>0.311</u>	A1					
		(3)					
(d)	$E(X) = [30 \times 0.216] + [15 \times 0.432] + [0 \times 0.288] + [(-15) \times 0.064]$	M1					
	E(X) = 12 <u>12</u> (only)	A1					
		(2)					
(e)	$E(X^{2}) = 30^{2} \times 0.216 + 15^{2} \times 0.432 + 0^{2} \times 0.288 + (-15)^{2} \times 0.064 (= 306)$	M1					
	$Var(X) = E(X^{2}) - [E(X)]^{2} = '306' - '12'^{2} =,$ <u>162</u>						
		M1, A1					
(f)	Let $V = $ number of points second in here $v = v$	(3)					
(1)	Let $Y =$ number of points scored in bonus round $\begin{bmatrix} y \end{bmatrix} = 60 = 35 = 10 = -15$	M1					
	$\begin{bmatrix} P(Y=y) \end{bmatrix} 0.216 0.432 0.288 0.064 \end{bmatrix}$	1411					
	$E(Y) = 60 \times 0.216 + 35 \times 0.432 + 10 \times 0.288 + (-15) \times 0.064$	dM1					
	= <u>30</u>	A1 (3)					
		(14 marks)					
	Notes						
(a)	M1 for $0.6^2 \times 0.4$ may be \Rightarrow by tree diagram with 0.6 & 0.4 but just 3×0.144 or 2×0.4	0.216 is M0					
(L)	A1 cso for $3 \times 0.6^2 \times 0.4$ (seen) and no incorrect working seen	0					
(b)	0.288 or $\frac{36}{125}$ answer may be seen in table. [NB Fractions: $\frac{27}{125}, \frac{54}{125}, \frac{36}{125}$	and $\frac{8}{125}$]					
	125 125 125 Correct answers to (c), (d) and (e) score full marks for these par						
(c)	M1 for either $0.216 \times 0.288' = (0.062208)$ or $0.432 \times 0.432 = 0.186624$	115.					
	$\frac{1}{100} \frac{1}{100} \frac{1}$						
	(ft (b) provided their (b) is a probability)						
	1 st A1ft for a fully correct expression 2^{nd} A1 for awrt 0.311 or $\frac{972}{3125}$						
SC	6 questions 4 correct Award M1&1 st A1 for $6C4 \times 0.6^4 \times 0.4^2$ or $15 \times 0.6^4 \times 0.4^2$	0.4^{2}					
	o questions 4 correct Award Writer Arrior 004×0.0 ×0.4 or 13×0.0 ×	0.4					
(d)	M1 for a correct expression for $E(X)$ (0 term not required, ft their (b))						
	NB alt: $3 \times (10 \times 0.6 + (-5) \times 0.4)$. $E(X) = 12$ scores M1A1 if (b) is a pro-	•					
(e)	1 st M1 for correct expres' for $E(X^2)$ (0 term not required, ft their(b))Condom	$e -15^2$					
	Ignore label so $Var(X) = [E(X^2)] = 306$ can score M1M0A0						
	2^{nd} M1 for correct expression for Var(X) (may follow through their values)						
ALT	1 st M1 for $[10^2 \times 0.6 + (-5)^2 \times 0.4 = 70]$ 2 nd M1 for $3 \times (70 - 4^2) = 54$ and A1	l for 162					
(6)		TT 10					
(f)	1 st M1 for correct distribution for $Y(ft(b))$ or $20 \times 0.6 + (-5) \times 0.4$ or $Y = \frac{5}{3}$						
	$2^{nd} dM1$ for correct expres' for E(Y) or $3 \times (20 \times 0.6 + (-5) \times 0.4)$ or E(Y) = $\frac{5}{3}$						
	Dep. on 1^{st} M1 but can ft their (b) or their $E(X)$. Correct expres' (line 2) score						
	A1 for 30 with at least 1 M mark scored. Answer only is 0/3 but 30 after M	[1 is 3/3					

Question	Scheme	Marks
6. (a)(i)	P(A) = P(Z > 1.1) = 1 - 0.8643 = 0.1357 (accept awrt 0.136)	B1
(ii)	P(B) = P(Z > -1.9) = 0.9713 (accept awrt 0.971)	B1
(iii)	$P(C) = [P(-1.5 < Z < 1.5)] = 0.9332 - (1 - 0.9332) \text{ or } (0.9332 - 0.5) \times 2$ $= \underline{0.8664} (\text{accept awrt } 0.866)$	M1 A1
(iv)	$P(A \cup C) = P(Z > -1.5) \underline{\text{or}} P(Z < 1.5) \underline{\text{or}}$ = P(A) + P(C) - P(A \cap C) = "0.1357"+ "0.8664"- (0.9332 - 0.8643) = <u>0.9332</u> (accept awrt 0.933)	M1 A1 (6)
(b)	$\left[P(X > w \mid X > 28) = \right] \frac{P(X > w)}{P(X > 28)} = \left[0.625 \right]$	M1
	$P(X > 28) = P\left(Z > \frac{28 - 21}{5}\right) = P(Z > 1.4) = [0.0808 \text{ calc: } 0.80756]$	M1
	$P(X > w) = 0.0808 \times 0.625 \ (= 0.0505) \ or (P(X < w) = 0.9495)$	A1
	$\frac{w-21}{5} = 1.64$	M1 B1
	w = awrt <u>29.2</u>	A1 (6)
		(6) (12 marks)
	Notes	
	Mark final answer here so in (ii) 0.9713 followed by $1 - 0.9713$ is B0 but the errors e.g. 29.245 followed by 29.3 apply ISW and award for 29.245	for rounding
(a)(iii)	M1 for correct expression with probability values . Correct ans implies M	1A1
(iv)	M1 for a correct addition formula with <u>some</u> correct substitution (or correct <u>or</u> $P(Z > -1.5)$ (o.e) <u>or</u> for a fully correct expression with correct provide A1 for 0.9332 (accept 0.933) Correct answer only is M1A1	
(b)	M1 for correct expression for conditional probability- must have $P(X > w)$ May be implied by $P(X > w) = 0.625 \times (any probability)$ M1 for standardising 28 with 21 and 5 Allow <u>+</u> (May be implied by 0.0808 [or awrt 0.081] seen in correct position) A1 for $P(X > w) = 0.0808 \times 0.625$ or $P(X > w) = 0.0505$ or $P(X < w) = 0.9505$ This A1 depends on both Ms but seeing $P(X > w) = 0.0808 \times 0.625$ scores	9495)
1 st 3 marks	Allow $P\left(Z > \frac{w-21}{5}\right)$ instead of $P(X > w)$ for these first 3 mark M1 for standardising <i>w</i> with 21 and 5 (allow <u>+</u>) and setting equal to a <i>z</i> -val Allow any letter instead of <i>w</i> B1 for 1.64 (or better) used correctly. [Calculator gives: 1.6402851] A1 allow awrt 29.2	

Greg Attwood 13th June 2015